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Abstract—Low-light image enhancement is a significant chal- 
lenge in computational imaging, necessitating innovative solutions 
that maintain visual information under suboptimal illumination. 
This research presents a novel hybrid methodology that inte- 
grates RetinexNet decomposition with a Generative Adversarial 
Network (GAN)-based enhancement model, effectively addressing 
key limitations in existing low-light image processing techniques. 
By decomposing images into reflectance and illumination compo- 
nents using an advanced deep learning framework, our approach 
develops a comprehensive strategy for reconstructing high-quality 
images. The method emphasizes the effective separation and 
enhancement of image components while preserving structural 
integrity and perceptual consistency. This two-stage enhancement 
process merges Retinex theory with sophisticated neural network 
architectures, exploring innovative strategies to transform images 
captured in challenging lighting conditions. Our methodology 
aims to overcome traditional challenges in low-light imaging, in- 
cluding noise amplification, color distortion, and loss of structural 
details.The findings demonstrate the robustness of this approach 
across various low-light conditions, ensuring adaptability beyond 
specific domains such as surveillance, autonomous driving, and 
medical imaging. The model is evaluated on diverse low-light 
environments, highlighting its potential for broader real-world 
applicability. 

Index Terms—Low-light image enhancement, Retinex theory, 
Generative Adversarial Network (GAN), Image processing , 
Reflectance ,illumination 
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I. INTRODUCTION 

Low-light imaging presents significant challenges in com- 
putational imaging, as quality levels of images are often found 
to be deteriorated on account of reduced visibility, diminished 
contrast, and heightened noise levels. These issues degrade 
visual quality and impair the performance of critical tasks 
such as object detection, recognition, and tracking, which 
are essential in applications like autonomous driving, medical 
imaging, security surveillance, and remote sensing. Therefore, 
innovative techniques for low-light image enhancement are 
vital to ensure the reliability of these systems under 
challenging lighting conditions. 

This research introduces a novel hybrid methodology that 
integrates RetinexNet decomposition [1] with a Generative 
Adversarial Network (GAN) [2]-based enhancement model. 
This approach effectively addresses key limitations in existing 

low-light image processing techniques by decomposing im- 
ages into reflectance and illumination components using an 
advanced deep learning framework. Our method emphasizes 
the effective separation and enhancement of these components 
while preserving structural integrity and perceptual consis- 
tency. 

The Retinex theory [3], developed by Land and McCann in 
the 1970s, serves as a foundational framework for this study. 
It models human vision’s ability to perceive consistent colors 
under varying lighting conditions by decomposing an image 
into two components: reflectance (representing intrinsic 
properties of the scene) and illumination (which accounts for 
varying lighting conditions). By estimating and correcting the 
illumination component while preserving reflectance, Retinex- 
based methods have shown significant potential in improving 
image visibility in low-light environments. 

Traditional methods, such as histogram equalization and 
gamma correction often fail to address the complexities of 
low-light scenarios effectively in spite of providing 
straightforward enhancements. Recent advances in deep 
learning have introduced novel architectures. They are 
designed with focus on low-light enhancement; however, 
many still struggle with issues such as over-enhancement, 
color distortion, and visual artifacts. 

The key contributions of this research are as follows: 
• Proposed a GAN [2]-based Retinex model: This new 

method merges Retinex theory with GANs to improve 
low-light images. It also tackles usual issues like over- 
enhancement and artifacts. 

• Strength across different uses: The model shows strength 
in important areas like security, self-driving cars, and 
healthcare imaging, where good visual rebuilding is very 
important. 

• Performance review: This study provides a detailed look 
at how well the suggested method works, comparing it to 
current techniques with numbers like PSNR, SSIM, and 
more, as well as visual checks for quality. 

The rest of this paper is set up like this Section II gives 
background on main ideas of Retinex theory. Section III 
looks at previous work in low-light image enhancement and 
points out different methods that exist. Section IV explains the 
methodology, focusing on the suggested GAN-based Retinex 
approach. Section V shows the results, including a detailed 
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analysis with both numbers and visual assessments. Lastly, 
Section VI wraps up the paper by summarizing key points, 
contributions, and possible future research paths in low-light 
image enhancement. 

II. BACKGROUND 

This section provides a foundational overview of Retinex 
theory. This theory models the ability of human visions in 
terms of  perceiving consistent colors under varying lighting 
conditions. Retinex- based approaches serve as the basis for 
many low-light image enhancement techniques by estimating 
and correcting the illumination component. 

A. Retinex Theory 

Retinex theory [3], introduced by Land and McCann, ex- 
plains how human vision perceives colors consistently across 
different lighting conditions. The theory suggests that an 
observed image can be decomposed into two components: 

 
I(x, y) = R(x, y) · L(x, y) (1) 

where: 

• I(x, y) is the observed image, 
• R(x, y) is the reflectance component, representing the 

intrinsic properties of the scene, and 
• L(x, y) is the illumination component, representing the 

varying lighting conditions. 

Retinex-based image enhancement techniques aim to re- 
cover the reflectance while appropriately estimating and ad- 
justing the illumination, improving visibility in low-light 
conditions. 

1) Variants of Retinex Theory: Several computational mod- 
els have been developed based on Retinex theory: 

• Single-Scale Retinex (SSR) – Enhances contrast by 
applying Retinex processing at a fixed scale but struggles 
with over-enhancement or loss of details. 

• Multi-Scale Retinex (MSR) [4] – Improves upon SSR by 
applying Retinex processing at multiple scales, balancing 
detail enhancement and color consistency. 

Retinex theory serves as a foundation for modern low- 
light image enhancement techniques, inspiring methods that 
combine Retinex with deep learning to achieve improved 
performance. 

III. RELATED WORK 

This section reviews existing methods for low-light image 
enhancement, focusing on their strengths, weaknesses, and 
limitations. We categorize these approaches into Retinex-based 
methods, deep learning models, and GAN-based techniques. 

A. Retinex-Based Methods 

Conventional Retinex-based methods leverage the theory’s 
ability to decompose images (as described in Section II.A) 
into reflectance and illumination components. For example, 
[1] uses guided image filtering to refine the illumination map. 
However, a key limitation of many traditional Retinex-based 

methods is their assumption that low-light images are noise- 
less, leading to significant noise amplification. Furthermore, 
they often rely on handcrafted priors that require extensive 
parameter tuning, limiting their adaptability to diverse scenar- 
ios. 

B. Deep Learning Approaches 

Deep learning has brought about noteworthy advancement 
in low-light image enhancement. Zero-Reference Deep Curve 
Es- timation [5] reformulates the enhancement task as pixel-
wise curve estimation guided by non-reference loss functions. 
Wei et al. [1] combined Retinex decomposition with deep 
learning. However, these methods often necessitate complex 
multi- stage training pipelines that can hinder practical 
application. URetinex-Net [6] incorporates deep unfolding 
optimization with Retinex theory. While effective, these 
models can struggle with generalization across varying 
conditions and complex illumination scenarios. 

C. GAN-Based Methods 

Generative Adversarial Networks (GANs) enhance low-light 
images by learning illumination mappings while preserving 
details. EnlightenGAN [7] enables unsupervised enhancement, 
while RetinexGAN [8] integrates Retinex decomposition for 
illumination correction. SID-GAN [9] improves extreme low- 
light images. These approaches leverage adversarial training 
to enhance visibility while reducing noise. 

Building on these advancements, our work introduces a 
novel GAN-based Retinex model that integrates GANs with 
Retinex decomposition for adaptive illumination enhancement. 
This approach aims to retain structural details while mitigating 
artifacts commonly found in previous methods. By addressing 
the shortcomings of existing techniques in terms of contrast 
improvement, illumination correction, and noise removal, our 
methodology offers a more robust solution for low-light image 
enhancement. 

IV. METHODOLOGY 

This section details our proposed RetinexGAN frame- 
work for low-light image enhancement. RetinexGAN lever- 
ages the strengths of both RetinexNet for robust reflectance- 
illumination decomposition and a custom-designed Generative 
Adversarial Network (GAN) to refine the illumination com- 
ponent and enhance overall image quality. While RetinexNet 
[1] excels at separating reflectance and illumination, it can 
sometimes produce results with residual noise and artifacts. 
To address these limitations, we introduce a GAN-based 
refinement stage that learns to generate visually appealing 
and artifact-free enhanced images. RetinexGAN builds upon 
the foundation of previous low-light enhancement techniques 
by combining the interpretability of Retinex theory with the 
generative power of GANs. This framework integrates the 
RetinexNet [1] model with a custom GAN-based enhancement 
model. The combination of these techniques aims to exploit 
the strengths of both methods to overcome the limitations of 
traditional low-light image enhancement approaches, which 
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often fail to maintain visual fidelity or preserve important 
structural details. The methodology is composed of two main 
stages: the first involves decomposing the input image using 
the Retinex theory to separate illumination from reflectance, 
and the second involves enhancing these decomposed com- 
ponents using a Generative Adversarial Network (GAN) [2]. 
This two-tier process effectively addresses both illumination 
degradation and noise while preserving the intrinsic scene 
features. 

A. RetinexNet: Decomposing Illumination and Reflectance 

 
Rout 

effects have been corrected for better contrast and bright- 
ness. 

• Reflectance Map (Rlow): This map retains the structural 
integrity of the original image with no alterations made 
to the reflectance information. 

Once these components are generated, they are passed on 
to the GAN-based enhancement model for further refinement. 
This stage ensures that both the enhanced illumination map is 
optimized further and overall image quality is improved. 

B. GAN-based Enhancement Model: Refining Illumination 
and Reflectance Maps 

Following the decomposition of the illumination map using 
Sinput Rlow 

low 
RetinexNet, the enhanced illumination map and the original 

Ilow 
I∆out 

reflectance map are fed into the GAN-based enhancement 
model for further refinement. This GAN architecture enhances 

Fig. 1. Decomposition and Enhancement Pipeline by RetinexNet. 
 

At the core of our methodology is RetinexNet, a deep 
learning-based model that applies the Retinex theory to de- 
compose low-light images into two distinct components: illu- 
mination and reflectance. The Retinex theory [3] posits that 
an image can be modeled as the product of these two factors. 
The reflectance map captures the intrinsic properties of the 
scene (e.g., textures and shapes), while the illumination map 
reflects the environmental lighting conditions (e.g., brightness 
and shadows). 

• Reflectance Map (R): This map contains the intrinsic 
details of the scene and remains unaffected by lighting 
conditions. It preserves crucial features such as texture, 
edges, and structural elements necessary for object recog- 
nition and scene understanding. 

• Illumination Map (L): The illumination map models 
the lighting effects responsible for low-light conditions, 
including shadows, highlights, and ambient light. These 
effects can obscure fine details in low-light images. 

RetinexNet [1]is specifically designed to handle this de- 
composition process by leveraging deep convolutional neural 
networks to accurately separate these components through two 
main modules: 

1) Decom-Net: This module extracts the reflectance and 
illumination maps using multiple convolutional layers 
to learn features that help isolate reflectance from il- 
lumination. The reflectance map represents true scene 
information while the illumination map models varying 
lighting effects. 

2) Enhance-Net: This module refines the illumination map 
by adjusting its brightness, contrast, and clarity to correct 
low-light conditions without altering the reflectance map. 
By enhancing the illumination map, we restore brightness 
and visibility, making images appear more natural and 
easier to interpret. 

The outputs from RetinexNet are: 

• Enhanced Illumination Map (I∆): This map represents 
an improved version of the illumination where lighting 

the image by improving the visual quality of both the illumi- 
nation and reflectance maps while ensuring that the structural 
details of the scene are preserved. 

 

Fig. 2. RetinexGAN Architecture 
 

The GAN [2] model, depicted in the diagram, consists of 
two primary components: the Generator and the Discrimina- 
tor, which are trained adversarially. 

• The Generator takes the input image and processes it 
through several stages: first, it passes through the En- 
coder [10], which extracts features, then through Resid- 
ual Blocks [11], which enhance the features and finally, 
the Decoder [10], which generates the output image. The 
Generated Image is the final output produced by the 
Generator. 

• The Discriminator, placed below the Generator in the 
diagram, receives the Input (Real/Fake) images, which 
include both real images and the generated ones. It 

Decom-Net Enhance-Net 
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processes these inputs through a Discriminator block and 
outputs a Real/Fake Output, indicating whether the input 
image is real or generated. 

The Generator and Discriminator are connected such that 
the Generated Image from the Generator is passed to the 
Discriminator, which then classifies it. The adversarial train- 
ing ensures that as the Generator improves in producing 
more realistic images, the Discriminator becomes better at 
distinguishing between real and fake images. This constant 
interplay between the two components leads to the Generator 
yielding increasingly high-quality results. 

1) Generator Architecture: The Generator network is de- 
signed to refine both the illumination and reflectance com- 
ponents output by RetinexNet. It learns to generate a more 
visually appealing image by enhancing brightness, contrast, 
and structure while preserving scene details. The Generator 
follows a deep neural network architecture with the following 
layers: 

1) Encoder [10]: The encoder extracts high-level features 
from the input components (the enhanced illumination 
map and reflectance map). It consists of several con- 
volutional layers that reduce spatial dimensions while 
capturing important features at multiple scales. The ar- 
chitecture starts by applying a convolution operation, 
followed by batch normalization and ReLU activation to 
ensure efficient feature extraction and transformation. The 
residual blocks, located at the end of the encoder, enhance 
the learning process by enabling the model to retain and 
process important information from earlier layers. 

progressively refining the feature map through convo- 
lutional layers. The use of batch normalization ensures 
stable training by normalizing the output of each layer, 
while the ReLU activations introduce non-linearity. The 
residual blocks further enhance the learning capability by 
allowing the network to retain critical information from 
the initial layers. 

2) Residual Blocks [11]: These blocks refine the image 
by learning residual features. Each block contains two 
convolutional layers with skip connections, allowing the 
network to learn additional fine details that contribute to 
overall enhancement. The residual blocks are designed 
to retain crucial information from the input and combine 
it with learned features to produce more detailed output. 
This helps improve the network’s performance by avoid- 
ing vanishing gradients and enabling it to learn deeper 
features more effectively. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. Encoder Architecture. 

 
The encoder effectively captures important features by 

Fig. 4. Residual Block. 

 
The residual block shown in the diagram includes two 
convolutional layers, each followed by batch 
normalization and ReLU activation. The output of the 
second convolution is then added to the original input 
via a skip connection. This skip connection helps retain 
information from earlier layers, allowing the network 
to learn both fine-grained features and overall patterns. 
By incorporating these residual connections, the block 
facilitates the learning of more complex features while 
improving training stability and performance. 

3) Decoder [10]: The decoder restores spatial resolution 
using transposed convolution layers. It reconstructs the 
image from the feature maps and outputs the enhanced 
image. The decoder is responsible for mapping the com- 
pressed, high-level features back into the image space, 
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which is crucial for generating a full-resolution image. 
The final layer applies a Tanh activation function, which 
helps scale the pixel values between [−1, 1], making the 
output suitable for visual representation. 

3) Batch Normalization: Batch normalization is applied 
after each convolutional layer (except the final layer) 
to stabilize training and reduce internal covariate shift, 
allowing for higher learning rates and faster convergence. 

4) Sigmoid Output: The final convolutional layer outputs a 
sigmoid value representing the probability that an input 
image patch is real. This output is then used to calculate 
the adversarial loss, guiding the Generator to produce 
more realistic patches. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5. Decoder Architecture. 

 

The decoder architecture shown in the diagram restores 
the spatial resolution of the image. The input to the 
decoder is the output of the residual blocks, which 
contains refined feature maps. It first applies a trans- 
posed convolution layer to upsample the feature map. 
Batch normalization and ReLU activations help stabilize 
training and introduce non-linearity. Finally, the decoder 
uses another transposed convolution layer to produce 
the image with three channels (RGB) and applies the 
Tanh activation function to ensure the pixel values are 
appropriately scaled for output. 

2) Discriminator Architecture: The Discriminator net- 
work’s primary role is to distinguish between real and gen- 
erated images using a patch-based approach. The input image 
is divided into non-overlapping patches of size N × N (e.g., 
64x64 pixels), and each patch is classified independently as 
either real or fake. This patch-based approach encourages 
the Generator to produce high-frequency details and realistic 
textures at a local level. The Discriminator consists of four 
convolutional layers, each followed by a Leaky ReLU activa- 
tion and batch normalization. The final layer outputs a single 
value representing the probability that a given patch is real. 

1) Convolutional Layers: The Discriminator uses four con- 
volutional layers to extract features from input images at 
multiple scales. 

2) Leaky ReLU Activation: Leaky ReLU activations allow 
gradients to flow through negative values during training, 
preventing issues associated with “dying ReLU,” which 
can hinder learning, especially in deep networks. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6. Architecture of the Patch Discriminator Network used for distinguish- 
ing real and generated patches. 

 
In summary, our GAN-based enhancement model effec- 

tively refines low-light images by leveraging both illumination 
and reflectance maps while maintaining structural integrity 
through adversarial training. 

3) Loss Functions: To optimize the performance of the 
Generator and Discriminator, we use a combination of adver- 
sarial loss, pixel-wise loss, perceptual loss, and image quality 
losses (PSNR and SSIM) [12]. These losses guide the Gen- 
erator to produce visually realistic images while maintaining 
high fidelity to the original scene structure. The total loss 
for the Generator is a weighted sum of the individual loss 
components: 

 
LG = Ladv +λ1Lpixelwise+λ2Lperceptual+λ3LPSNR+λ4LSSIM 
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where Ladv is the adversarial loss, Lpixelwise is the pixel- 
wise loss, and Lperceptual is the perceptual loss, with addi- 
tional terms for PSNR and SSIM [12]. The weighting factors 
(λ1, λ2, λ3, λ4) control the relative importance of each loss 
term. The specific form of each loss function and the values 
of the weighting factors were determined experimentally. 

• Adversarial Loss [2]: The Generator aims to minimize 
the adversarial loss by trying to deceive the Discriminator. 
The Discriminator, in turn, works to correctly classify im- 
ages as real or generated. This adversarial setup improves 
the realism of the generated images. 

• Pixel-wise Loss: The pixel-wise loss ensures that the 
generated image is close to the ground truth in terms 
of pixel values. This helps reduce artifacts and ensures 
better image quality. 

• Perceptual Loss: Perceptual loss compares the feature 
representations of the generated and ground truth images, 
encouraging the Generator to learn high-level features 
that align with the target. 

• PSNR and SSIM Losses [12]: These image quality 
metrics help preserve the overall image structure and 
reduce the distortion caused by low-light enhancement. 

C. Computational Requirements 

The proposed method was trained on a dual Tesla T4 
GPU setup (16GB VRAM each) in the Kaggle environ- 
ment, leveraging multi-GPU parallelism to optimize compu- 
tational efficiency. The inference time per image is 0.12s, 
with RetinexNet decomposition accounting for 40% and the 
GAN-based enhancement stage contributing 60% of the total 
processing time. Given the complexity of the model, GPU 
acceleration is essential, as CPU-based execution significantly 
increases latency. The multi-stage framework produces better 
low-light image quality but future optimizations including 
model pruning and quantization and knowledge distillation 
will enhance computational efficiency for real-time 
applications in resource-constrained environments. 

D. Overall Approach 

In summary, the proposed method combines the RetinexNet 
[1] decomposition for low-light image enhancement with a 
GAN-based refinement model to produce high-quality, detailed 
images. The two-stage pipeline allows for effective separa- 
tion of illumination and reflectance components, followed by 
advanced enhancement techniques using GANs to refine the 
image. The use of multiple loss functions, including perceptual 
and image quality-based losses, ensures that the enhanced 
images maintain structural integrity while appearing natural 
and clear. 

V. RESULTS AND EVALUATION 

In this section, we present the results of the proposed low- 
light image enhancement method. We evaluate the perfor- 
mance of our approach in terms of both qualitative and quan- 
titative metrics. The following experiments were conducted to 
validate the effectiveness of our method. 

A. Qualitative Evaluation 

To showcase the improvements brought about by our pro- 
posed method, we present a selection of low-light images 
from the LOL [1] dataset alongside their enhanced versions. 
These results highlight the effectiveness of our Retinex-based 
decomposition and GAN-based enhancement technique in 
significantly boosting image brightness, contrast, and detail 
preservation. 

1) Overview of the Enhancement Process: Our low-light 
image enhancement model follows an intuitive input → en- 
coder → residual → decoder architecture. In this section, 
we will walk through each stage of the processing pipeline, 
illustrating how each contributes to the overall enhancement 
of the images. 

 

Fig. 7. Input Illumination Map. 
 

The original image, displayed in Figure 7, represents the 
illumination map generated by RetinexNet. This serves as 
the starting point for our model and reflects the challenging 
lighting conditions present in the scene. As you can see, this 
image requires significant enhancement to improve clarity and 
detail representation. 

 

Fig. 8. Encoder architecture output. 
 

After passing through the encoder, the image is transformed 
into a feature-extracted representation, as shown in Figure 8. 
The encoder plays a vital role in isolating key features—like 
edges and textures—while filtering out unnecessary data. This 
simplification helps the model to place emphasis on the 
important vi- sual elements needed for effective enhancement. 
The encoded image presents a distilled version of the original, 
capturing essential details that will be refined in later steps. 

The residual component, illustrated in Figure 9, captures 
the differences between the original illumination map and 
its enhanced counterpart. This image highlights areas where 
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Fig. 9. Residual architecture output. 
 

 

significant corrections are applied, particularly in terms of 
brightness, contrast, and sharpness. The residual image is 
crucial for ensuring that enhancements do not distort impor- 
tant details, allowing us to selectively enhance underexposed 
regions while maintaining edge sharpness. 

 

Fig. 10. Final enhanced output. 

 
The final output, shown in Figure 10, is produced after 

passing through the decoder, which reconstructs the image 
from both encoded features and residual enhancements. This 
stage restores visual details, resulting in an image character- 
ized by improved brightness and contrast without introducing 
artifacts or overexposure. The output showcases a remarkable 
enhancement in perceptual quality, where finer details become 
clearer and natural colors are preserved. 

The visual transition from the input image to the encoded, 
residual, and decoded images demonstrates how effectively our 
model enhances low-light images. By employing an encoder- 
decoder framework with residual enhancements, our approach 
successfully addresses challenges associated with low-light 
conditions—such as noise, poor contrast, and detail loss. In 
comparison to traditional enhancement methods, our model 
achieves a more balanced improvement while preserving fine 
details and avoiding issues like over-brightening or noise 
amplification. 

This qualitative evaluation showcases how effectively our 
proposed method enhances low-light images, bringing out 
hidden details and improving overall clarity. The enhanced 
images demonstrate the model’s ability to preserve essential 
features while making the scene more visually appealing. 

To further illustrate our findings, we provide examples 
of low-light images alongside their high-lighted enhanced 
versions: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 11. Blended low-light and high-light image generated by our model. 

 
 
 

B. Quantitative Evaluation 
 

We used the Peak Signal-to-Noise Ratio (PSNR) and Struc-
tural Similarity Index (SSIM) for ensuring that the 
performance of our method is quantitatively evaluated. 
PSNR is a widely used metric to assess the quality of 
images, with higher values indicating better image quality. 
SSIM contributes to the measurement of the structural 
similarity between images, with values closer to 1 indicating 
higher similarity. We compared our results with state-of-the-
art low- light enhancement methods on the LOL [1] dataset to 
assess the improvements in terms of PSNR and SSIM. 

 
Method PSNR (dB) SSIM 

SID [13] 14.35 0.436 
3DLUT [14] 14.35 0.445 

DeepUPE [15] 14.38 0.446 
RF [16] 15.23 0.452 

DeepLPF [17] 15.28 0.473 
IPT [18] 16.27 0.504 

UFormer [19] 16.36 0.771 
RetinexNet [1] 16.77 0.560 

Sparse [20] 17.20 0.640 
EnGAN [7] 17.48 0.650 
RUAS [21] 18.23 0.720 
FIDE [22] 18.27 0.665 

DRBN [23] 20.13 0.830 
KinD [24] 20.86 0.790 

Restormer [25] 22.43 0.823 
MIRNet [26] 24.14 0.830 
SNR-Net [27] 24.61 0.842 

Retinexformer [28] 25.16 0.845 
Proposed Method 26.32 0.804 

TABLE I 
COMPARISON OF PSNR AND SSIM FOR VARIOUS LOW-LIGHT IMAGE 

ENHANCEMENT METHODS ON LOLV1. 
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C. Discussion 

The results show a noteworthy improvement in PSNR for 
our method compared to traditional and Retinex-based 
methods. This significant improvement in PSNR can be 
attributed to the GAN-based refinement stage, which 
effectively reduces noise and enhances finer details. The 
proposed method achieves a PSNR [12] of 26.32 dB, which 
represents a substantial enhancement in image quality, as 
higher PSNR values cor- respond to clearer and more visually 
accurate images. The enhanced images demonstrate better 
visibility, reduced noise, and preserved structural details, 
confirming the effectiveness of combining RetinexNet and a 
GAN-based enhancement approach. 

This significant improvement in PSNR highlights the poten- 
tial of our method in real-world applications requiring high- 
quality low-light image enhancement. 

VI. CONCLUSION 

In this paper, we presented a hyrid approach for low-light 
image enhancement method based on RetinexNet and Gener- 
ative Adversarial Networks (GANs). Our approach combines 
the advantages of Retinex-based decomposition and GAN- 
driven enhancement to significantly improve image visibility, 
brightness, and detail preservation. Through both qualitative 
and quantitative evaluations, we demonstrated the superiority 
of our method over existing low-light enhancement techniques. 
The results show notable improvements in PSNR, indicating 
enhanced image quality, with better noise reduction and preser- 
vation of structural details. Our method outperforms traditional 
approaches and state-of-the-art methods such as RetinexNet 
and EliganentGAN , making it a promising solution for real- 
world low-light image enhancement tasks. Future work will 
focus on further optimizing the model for real-time process- 
ing and extending it to more challenging scenarios, such as 
dynamic low-light conditions. 
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