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Abstract— This paper introduces an improved strategy for 
multi- area economic and environmental dispatch (MAEED) 
utilizing the Non-Dominated Sorting Genetic Algorithm II 
(NSGA-II). As the global push for sustainable energy solutions 
intensifies, optimizing power distribution to minimize both cost 
and emissions has become essential. This work formulates 
MAEED as a bi-goal nonlinear constrained optimization 
problem incorporating power balance, generation capacity, and 
tie-line limits. The proposed NSGA-II is benchmarked against 
Strength Pareto Evolutionary Algorithm II (SPEA-II) and other 
contemporary methods. Simulation results on a four-area power 
system illustrate that NSGA-II consistently outperforms 
alternatives by offering superior trade-offs between cost and 
emissions. Recent studies support these findings, highlighting 
the robustness of evolutionary approaches in multi-goal 
dispatch problems. 
 

 
I. INTRODUCTION 

 
Power generation from fossil fuels continues to be a major 
contributor to air pollution, releasing harmful gases like sulfur 
oxides, carbon oxides, and nitrogen oxides into the atmosphere. 
These pollutants not only pose serious risks to human health and 
other living organisms but also contribute to vegetation damage, 
acid rain, reduced visibility, and global warming. 
 
Growing environmental awareness, along with regulatory 
frameworks like the Clean Air Act Amendments of 1990, have 
pushed power stations to actively work towards reducing 
emissions. However, this creates a challenging trade-off: 
producing electricity at the lowest cost while also minimizing 
environmental impact. 
 
More than a few methods have been projected to reduce 
emissions—such as installing post-combustion cleaning 
systems, using cleaner fuels, replacing older fuel burners, and 
optimizing how power is dispatched. Among these, power 
dispatch optimization within emission limits is often seen as the 
most practical and cost-effective strategy, especially since the 
other approaches usually require substantial capital investment 

and infrastructure changes. 
 

 
The dual goals of minimizing both fuel cost and emissions often 
conflict, and must be addressed together to find a balanced, 
feasible solution. Initially, classical optimization techniques like 
linear programming were employed, but they struggled with the 
complexity of real-world systems[1-17]. As a result, more 
sophisticated methods—like evolutionary and swarm-based 
algorithms—have gained popularity. These modern techniques are 
better equipped to navigate the complicated landscape of multi-
objective optimization problems [18-25]. 
 
Over the years, many such methods have been developed and 
tested for Economic Emission Dispatch (EED) in single-area 
systems, taking into account real-world constraints [27]. More 
recently, Multi-Objective Evolutionary Algorithms (MOEVAs) 
have emerged, providing effective solutions via Pareto-optimal 
fronts obtained in a single execution, using techniques such as the 
Strength Pareto Evolutionary Algorithm II (SPEA II), Non-
Dominated Sorting Genetic Algorithm (NSGA), its improved 
version NSGA-II, Multi-Objective Particle Swarm Optimization 
(MOPSO), and others have shown promising results in this space 
[26-30]. 
 
However, modern power systems are rarely isolated. They are 
usually part of interconnected multi-area networks, where power 
generation and distribution happen across different regions linked 
via tie-lines. This adds another layer of complexity. While earlier 
research mostly focused on profitable dispatch in these multi-area 
systems, recent attention has turned to Multi-Area Economic 
Environmental Dispatch Strategies (MAEEDS), which consider 
both cost and environmental factors [31-48]. 
 
In MAEEDS, the goal is to determine how much power should be 
generated in each area, and how much should be exchanged across 
regions, so that both total cost and emissions are minimized—
while still respecting operational constraints like generation 
capacity, tie-line limits, and demand-supply balance[45-55]. 
 
Solving such complex, constraint-heavy optimization problems is 
no easy task. There’s no one-size-fits-all key solution, and 
choosing the right optimization technique is critical.  
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In this context, the present work focuses on applying NSGA-II 
to solve the MAEEDS problem, modeled as a nonlinear, 
constrained, multi-objective optimization challenge. 

 
A four-area test system has been used to validate this approach. 
For comparison, the same system is also analyzed using SPEA 
II. Benchmark results from other methods—such as multi-
objective particle swarm optimization(PSO), differential 
evolution(DE), and the Jaya algorithm—are taken from the 
literature. 

 
Results from the study show that NSGA-II provides superior 
performance in subsequent monetary and ecological goals, 
making it a strong candidate for real-world MAEEDS 
applications. 

 
 

II. PROBLEM FORMULATION 
 

This MAEED is formulated here as in convention. The set of 
governing equations and constraints are summed up below 

 
Objectives 

 
 Cost 

 

NA NCg 

f1 f1gh pgh           (1)
g1 h1 

 

f1gh pgh agh bgh pgh cgh p
2
 

 + dghsinegh(pminpgh) (2)
 

 Emission 
 

NA NCg 

f1’f1’gh pgh          (3)
g1 h1 

f1’gh pgh ghgh pghγghp
2ηgh expδgh pgh   (4) 

 

Constraints 

Production-demand balance 

NCg 

pgh pDg pLg Tgo             gNA                      (5) 

                     ho,o1 
    

 Tie line capacity 

 
												−���

��� ≤ 	��� ≤ ���
���																																																														(6) 

Power production capacity 

−���
��� ≤ 	��� ≤ ���

���																				gNA, hNCg                            (7) 

 
III. SOLUTION METHODOLOGY 

 
To solve complex multi-objective and constraint-laden problems 
like Multi-Area Economic Emission Dispatch (MAEED), the real-
coded NDSGA-II has been used in this study. The step-by-step 
workflow of the algorithm is described below in a simplified and 
structured manner: 

 
Step-by-Step Process of NDSGA-II 

 

1. Initialization: The algorithm begins by randomly generating an 
initial parent population (PAPOP) consisting of N1 members. These 
represent potential solutions to the optimization problem. 

 

2. Fast Non-Dominated Sorting: Each solution in the population is 
ranked based on non-dominance. Solutions that are not dominated 
by any others are assigned to the first front (rank 1), the next set to 
the second front (rank 2), and so on. This helps prioritize better 
solutions during selection. 

 
3. Tournament Selection: From the current population, two 
individuals are randomly selected and compared based on their front 
ranking and crowding distance (a measure of solution diversity). 
The better of the two is chosen and added to the mating pool. 

 

4. Crossover and Mutation: Next, the mating pool undergoes 
Polynomial transmutation and Simulated Binary Crossover (SBX) 
to generate a new child population (CHPOP). This population is the 
same size (N1) as the parent population. 

 

5. Merging of Populations: The parent (PAPOP) and child 
(CHPOP) populations are merged to create a combined population 
RESPOP of size 2N1. 

 

6. Fast Non-Dominated Sorting on RESPOP: This combined 
population is then sorted again based on non-dominance. This step 
includes both parents and children, ensuring elitism (the best 
solutions are preserved). The algorithm selects the best individuals 
from the top fronts (starting with the first front, then second, and so 
on) until the new parent population reaches size N1. 

 

If the number of individuals in the last front exceeds the required 
number of spots, solutions in that front are sorted based on 
crowding distance (in descending order), and the top solutions are 
selected to fill the remaining slots. 

 
The result is a new generation of PAPOP containing N1 high-
quality solutions. 
 

7. Repeat Until Termination: The process—tournament selection → 
crossover → mutation → merging → sorting → selection—is 
repeated for a predefined number of generations. After each 
generation, the termination condition is checked. 
 

If the stopping condition is not met, the newly created PAPOP is 
used as the parent for the next iteration. 

 
 

 

8. Final Selection: Once the termination criterion is satisfied, the 
best solution is chosen from the first non-dominated front, 
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representing the most optimal trade-off among objectives. 

 
9. End of Execution: At this point, the NDSGA-II algorithm 
concludes. 

 
A flowchart representing this entire process is shown in Figure I, 
followed by a detailed explanation. 

 

 
Fig. NDSGAII 

•  

RESPOP= PAPOP (Merging of the PAPOP and the CHPOP) 

 FS denotes fast non-dominance based sorting 
(RESPOP). 

FSNDB1, NDB2, , NDBl

Where NDBi denotes a non-dominance based front corresponding 
to the RESPOP. 

PAPOPand p  1 

Until |PAPOP| + |FNP| N1 (i.e., the PAPOP fills) 

 Assigning of pdist(FNp) 

RESPOP = PAPOPFNp (Inclusion of pth non-dominance 

based facade in the PAPOP) p = p + 1 (examination of 

the following front in order to include) 

 Sorting (FNp,>) 

‘>gets utilized for sorting in the decreasing order. 

PAPOP'  PAPOP'  FNp1:N1PAPOP
Selecting the starting (N1 – |PAPOP|) elements corresponding to 
FNp. 

CHPOP’ represents child population corresponding to the PAPOP’. 

Figure II delineates flowchart of the STPEA II algorithm. 

 

 

Fig. 2   SPEA II 

 

IV. SIMULATION RESULTS 

 
Evaluating NDSGA-II on a Multi-Area Power System: 
Performance and Comparisons: To demonstrate the effectiveness 
of the NDSGA-II, a four-area power system was used, with each 
area containing four generators. The model includes complex, 
non-smooth fuel cost functions and emission characteristics for 
pollutants. Detailed generator data and tie-line power exchange 
limits are provided in Appendix Tables A1 through A4. The load 
demands for areas 1 to 4 were set at 30 MWt, 50 MWt, 40 MWt, 
and 60 MWt, respectively. 
 
The simulations were executed using custom-developed code in 
MATLAB R2013a. To determine the extreme points of the trade-
off surface (between cost and emission), a real-coded genetic 
algorithm (RECGA) was used, based on the work by Herrera et al. 
(1998). Results showing area-wise power generation, associated 
operating costs, and emissions are visualized in Figures 3 through 
6. 
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During the RECGA simulations, parameters were set as 
follows: population size = 100, number of generations = 500, 
mutation probability = 0.2, and crossover probability = 0.9. 
Under the cost-minimization objective, the fuel cost reached 
$1,521.92/hour with an emission level of 2.511944 tons/hour. 
When the focus shifted to minimizing emissions, the cost rose 
to $2,858.45/hour while emissions dropped to 2.255910 
tons/hour. These trade-offs are further illustrated through the 
convergence curves in Figures 7 and 8. 
 
To simultaneously optimize both cost and emissions, the 
NDSGA-II method was employed. For this scenario, the 
algorithm parameters were: population size = 20, generations = 
50, mutation probability = 0.2, and crossover probability = 0.9. 
The results revealed a balanced outcome: fuel cost of 
$2,306.15/hour and emissions of 2.367206 tons/hour. These 
values lie between the extremes achieved when cost and 
emissions were optimized individually, demonstrating the 
method’s effectiveness in achieving a good compromise. 
 
To benchmark NDSGA-II’s performance, another well-
regarded method—Strength Pareto Evolutionary Algorithm II 
(STPEA-II)—was also applied to the same problem. Both 
algorithms were run with identical settings for a fair 
comparison: population size = 20, generations = 50, mutation = 
0.2, crossover = 0.9. 
 
Table I summarizes the best results from both NDSGA-II and 
STPEA-II, including the most cost-effective and least-polluting 
solutions, with RECGA results included for reference. Figure 9 
presents 20 non-dominated solutions obtained at the final 
generation by both NDSGA-II and STPEA-II. 
 
In Table II, the results from NDSGA-II are compared against 
those from other widely-used optimization techniques such as 
Particle Swarm Optimization (PSO), Differential Evolution 
(DE), and the Jaya Algorithm (JA), based on literature sources. 
Notably, the minimum fuel cost achieved by NDSGA-II was: 
 
10.10% lower than PSO (Wang & Singh, 2009), 
 
8.84% lower than DE (Pandit et al., 2015), and 
 
8.80% lower than JA (Azizipanah-Abarghooee et al., 2016). 
 
Similarly, the minimum emission level was reduced by: 
 
28.03% compared to PSO, 
 
5.98% compared to DE, and 
 
4.84% compared to JA. 
 
These significant improvements highlight the strength of 
NDSGA-II in solving complex multi-objective problems like 
MAEEDS. One of the key advantages of NDSGA-II is that it 
avoids favoring any single solution during its search process. 
Every solution on the Pareto front is treated with equal 
importance, which minimizes the chances of getting trapped in 
local optima. As a result, NDSGA-II is capable of uncovering 
superior solutions that other particle-based optimization 
methods might miss. 
 

 
 

Fig. 3    Power/cost/emission character for area 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 4    Power/cost/emission character for area 2  
 

 

 

Fig. 5    Power-cost-emission characteristics for area 3 (see online version for 
colours) 
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 Fig. 6    Power/cost/emission character for area 4  
 
 
 
 

 

Fig. 7    Performance curve for the fuel cost 
 

 
 

 
 

Fig. 8    Performance for the emission 
 

 

TABLE 1 REPRODUCTION RESULTS  

 

 Minimum 
fuel cost 

Minimum emission 
Level (Ton/hr)        

NDSGA II        STPEA II
 

($/hr)    

P11 
(MWt)

6.2199 0.000524 4.2767 3.7801 

P12 
(MWt)

0.0500 0.000450 2.4432 1.9565 

P13 
(MWt)

0.0675 0.117000 5.0288 9.0004 

P14 
(MWt)

11.6650 0.107682 10.2873 9.0604 

P21 
(MWt)

8.6814 0.225000 15.6294 13.9816 

P22 
(MWt)

0.3559 0.108000 9.1385 8.0030 

P23 
(MWt)

20.0000 0.084093 12.1516 17.5303 

P24 
(MWt)

17.9797 0.089201 16.1274 15.6876 

P31 
(MWt)

0.0500 0.084356 11.1128 14.2898 

P32 
(MWt)

30.0000 0.082287 11.5027 6.8935 

P33 
(MWt)

8.0818 0.107455 9.2512 3.3478 

P34 
(MWt)

10.0555 0.115771 11.5776 18.2130 

P41 
(MWt)

1.4822 0.099000 7.8041 7.1157 

P42 
(MWt)

14.0633 0.151746 14.1608 13.0403 

P43 
(MWt)

30.0000 0.129198 21.1647 18.8948 

P44 
(MWt)

21.2478 0.118237 18.3432 19.2051 

T21 
(MWt)

6.0000 0.054000 4.4186 4.3529 

T13 
(MWt)

–3.9976 –0.006468 –2.5100 –1.5756 

T41 
(MWt)

2.0000 –0.016125 1.0355 0.2741 

T32 
(MWt)

3.5000 0.031500 1.4146 1.0910 

T24 
(MWt)

–5.4830 0.033794 0.0429 1.9407 

T34 
(MWt)

0.6898 –0.008100 –0.4802 0.0775 
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Fig. 9   Final optimal pareto 

 

TABLE II   RELATIVE ANALYSIS  

 
 
 

V    CONCLUSIONS 

 
Strategy of MAEED is a critical optimization challenge in power 
system operations. This study proposes the use of the Non-
Dominated Sorting Genetic Algorithm II (NDSGA-II) to address 
this bi-objective problem—minimizing both fuel cost and 
emissions—across a four-area power network, while accounting for 
real-world constraints such as load-generation balance, generator 
capacity, and tie-line transmission limits. 
 
A detailed comparison between the results obtained using NDSGA-
II, Strength Pareto Evolutionary Algorithm II (STPEA-II), and 
other established methods highlights the effectiveness of both 
NDSGA-II and STPEA-II for solving such dual-objective 
optimization tasks. Among these, NDSGA-II demonstrates superior 
performance in achieving better trade-off solutions in this particular 
setup. 
 
However, it's important to recognize that the true global optimal 
solution for complex MAEEDS problems is generally unknown. 

Real-world systems often involve more areas, diverse constraints, and 
non-linear characteristics, making it uncertain whether the same 
algorithm will consistently perform best across all scenarios. 
 
Therefore, while this work validates NDSGA-II for the chosen case, 
future research should focus on testing and developing newer, more 
advanced multi-objective optimization algorithms on a wider range of 
MAEEDS models. Exploring their adaptability and robustness in 
more complex, real-world configurations will be key to advancing this 
field 
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APPENDIX 
 

TABLEA1     GENERATOR CHARACTERISTICS (PRODUCTION CAPACITY LIMITS) 
 

 

 

 

TABLEA2      GENERATOR CHARACTERISTICS (COST COEFFICIENTS) 
 

 

Generator(GNgh) agh($/hr) bgh($/MWt.hr) cgh($/MWt2.hr) dgh($/hr) egh(rad/MWt) 

GN11 0 38.53900 0.15247 100 0.084 

GN12 0 46.15916 0.10587 150 0.063 

GN13 0 40.39655 0.02803 120 0.077 

GN14 0 38.30553 0.03546 200 0.042 

GN21 0 36.32782 0.02111 300 0.035 

GN22 0 38.27041 0.01799 150 0.063 

GN23 0 2.000000 0.00375 18.0 0.037 

GN24 0 1.750000 0.01750 16.0 0.038 

GN31 0 3.000000 0.02500 13.5 0.041 

GN32 0 2.000000 0.00375 18.0 0.037 

GN33 0 1.000000 0.06250 14.0 0.040 

GN34 0 1.750000 0.01950 15.0 0.039 

GN41 0 3.250000 0.06250 12.0 0.045 

GN42 0 3.250000 0.00834 12.0 0.045 

GN43 0 1.750000 0.01950 15.0 0.039 

GN44 0 1.000000 0.00834 14.0 0.040 
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                                                TABLEA3      GENERATOR CHARACTERISTICS (EMISSION COEFFICIENTS) 

 
 

 
 
 

TABLEA4 TIE LINE POWER TRANSFERRING CAPACITY LIMITS 

 

Tie line (Tgo ) Tgo 
max (MWt ) T max (MWt ) 

go 

T12 

T13 

–6.0 

–4.0 

6.0 

4.0 

T14 –2.0 2.0 

T23 –3.5 3.5 

T24 –5.5 5.5 

T34 –0.9 0.9 

 


