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ABSTRACT 
The selection of optimal design parameters for low-cost small transformers possesses 
significant challenges due to nonlinear objective functions and multiple constraints. 
Conventional optimization approach often fails to give global optima, necessitating the 
exploration of non-classical methods. Existing optimization schemes for single-phase 
transformer design parameter selection suffer from limitations, including convergence to local 
optima and inability to handle nonlinear objective functions, resulting in sub optimal material 
costs and efficiency. 
The objective of this study is to design and evaluate the performance of GA, SA, and PS 
algorithms for minimizing material expenses in the design of a 5KVA, 230/115 volt, single-
phase, core-type, dry transformer, ultimately identifying the most effective optimization 
approach. 
The total cost of copper and iron is considered the objective function. A comparative 
performance evaluation of GA, SA, and PS is conducted to identify the most effective 
optimization scheme. The results demonstrate that non-classical techniques outperform 
traditional methods, yielding improved and acceptable solutions. The optimal design 
parameters obtained using GA, SA, and PS are analyzed and compared. 
This study establishes the efficacy of stochastic optimization methods in transformer design 
optimization, providing valuable insights for researchers and engineers. The findings suggest 
that GA, SA, and PS can be effectively employed to minimize material costs and enhance 
transformer efficiency. 
Keywords: Single-phase transformer, Stochastic optimization, Genetic Algorithm, Simulated 
Annealing, Pattern Search, Design parameters, Material cost minimization. 
 
SYMBOLS AND ABBREVIATIONS 
Symbols: 

 
1. Transformer Rating (TR) 

2. Primary Voltage (Vp), Secondary Voltage (Vs) 

3. Primary Current (Ip), Secondary Current (Is) 

4. Maximum Flux Density (Bm), Tesla 

5. Current Density (J), A/(link unavailable) 

6. Stacking Factor (SF) 

7. Window Space Factor (WSF) 

8. Window Dimensions: Height (Wh), Width (Ww), Aspect Ratio (Wh/Ww) 

9. Electromotive Force per Turn (EMFt), V 
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10. Number of Turns: Primary (Np), Secondary (Ns) 

11. Conductor Cross-Sectional Area: Primary (CSp), Secondary (CSs), (link unavailable) 

 
Abbreviations: 

 
1. KVA - Kilovolt-Ampere 

2. C.S. - Cross-Sectional 

3. EMF - Electromotive Force 

4. SF - Stacking Factor 

5. WSF - Window Space Factor 

 
Cost Parameters: 

 
1. Iron Cost (CI), Rs. 

2. Copper Cost (CC), Rs. 

3. Total Cost (TC), Rs. 
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1. INTRODUCTION 
The growing demand for efficient and cost-effective transformer designs has driven significant 
research efforts in optimization algorithms. The transformer industry seeks simple, effective 
solutions to minimize material costs, enhance performance, and reduce energy losses. Recent 
studies have proposed various optimization techniques, including artificial intelligence (AI) 
and deterministic methods. 
Artificial intelligence (AI) techniques have proven instrumental in optimizing transformer 
design. Specifically, genetic algorithms (GAs) have successfully: 
- Minimized transformer costs by optimizing material usage [12] 
- Enhanced performance of cast-resin distribution transformers through efficient design 
configurations [13] 
- Optimized toroidal core transformer designs for improved efficiency and reduced size [14] 
These applications demonstrate the potential of AI-driven optimization in transformer design, 
paving the way for further innovations.Neural networks have facilitated the selection of 
winding materials. They have also enabled the prediction of transformer losses. Additionally, 
neural networks help in predicting transformer reactance [15, 16]. Deterministic methods, such 
as geometric programming, have optimized transformer design for low-frequency and high-
frequency applications [17]. 
However, existing literature primarily focuses on minimizing specific components' costs 
(magnetic materials [18]) or optimizing performance parameters (output power [19], load loss 
[20, 21], and no-load loss [22]). Overall manufacturing cost minimization remains relatively 
unexplored. 
Optimization is the procedure of selecting the optimal solution from a set of available 
alternatives. It involves systematically adjusting variables within given constraints. The goal is 
to minimize or maximize a specific function. This process helps in finding the best possible 
outcome based on the defined criteria. In real-world scenarios, there are often several feasible 
solutions, but optimal design refers to selecting the best one, usually under inequality 
constraints. Classical (deterministic) and non-classical (probabilistic) optimization tools are 
available. Non-classical techniques, on the basis of soft computing, have gained popularity for 
handling complex problems.  
The present study investigates the efficacy of Pattern Search, Simulated Annealing, and 
Genetic Algorithm in optimizing single-phase transformer design. The primary aim is to create 
an optimized algorithm that reduces material costs for a 5KVA, 230/115 volt, single-phase, 
core-type, dry transformer, enhancing design efficiency. This study aims: 
1. To compare Pattern Search, Simulated Annealing, and Genetic Algorithm performance in 
transformer design optimization. 
2. To find the best design parameters that contribute to minimizing material costs. 
3. To investigate non-classical optimization methods' applicability and limitations in 
transformer design. 
This research contributes to existing knowledge by providing a comprehensive evaluation of 
non-classical optimization techniques in transformer design optimization, offering valuable 
insights for researchers, engineers, and industry professionals. 

2. LITERATURE REVIEW 
The design optimization of electrical transformers has been an active area of research for 
several decades. This literature review provides a comprehensive overview of the 
developments in transformer design optimization. 
2.1 Optimization Techniques  
The foundation for transformer design optimization was laid by Andersen (1967) [1] and 
Kambo (1991) [10], who pioneered the use of mathematical programming techniques. These 
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studies demonstrated the effectiveness of linear and nonlinear programming in minimizing 
transformer costs, setting the stage for future research. Andersen's work [1] focused on 
nonlinear programming, employing a gradient-based search algorithm to optimize transformer 
design. The author considered various design parameters, including core geometry, winding 
configuration, and material selection. Andersen's study showed that mathematical optimization 
can significantly reduce transformer costs. Kambo's comprehensive overview [10] of 
mathematical programming techniques provided valuable insights into linear and nonlinear 
programming. The author discussed various optimization algorithms, including the simplex 
method and gradient-based search. Kambo's work served as a crucial resource for 
understanding the mathematical foundations of transformer design optimization. 
Building on these foundations, Goldberg (2011) [11] introduced genetic algorithms (GAs) for 
optimization. GAs have since been widely applied in transformer design due to their ability to 
handle complex, nonlinear optimization problems. Goldberg's work demonstrated the 
effectiveness of GAs in optimizing transformer design, considering multiple objectives and 
constraints. The application of GAs in transformer design optimization has been further 
explored in subsequent studies. For example, Amoiralis, Georgilakis and Tsili (2008) [12] 
used GAs to optimize transformer design, considering minimization of copper loss, iron loss, 
and material costs. Elia et al. (2006) [13] combined GAs with simulated annealing to optimize 
transformer design. More recently, researchers have explored other optimization techniques, 
such as particle swarm optimization (PSO) and artificial neural networks (ANNs). Jabr (2005) 
[17] reviewed recent advances in transformer design optimization, highlighting the potential of 
evolutionary algorithms like GAs and PSO. 
The development of optimization techniques for transformer design has progressed 
significantly since Andersen's and Kambo's pioneering work. Mathematical programming 
techniques, GAs, and other evolutionary algorithms have been successfully applied to optimize 
transformer design, reducing costs and improving efficiency. 
2.2 Computer-Aided Design and Multi-Objective Optimization 
The combination of computer-aided design (CAD) and multi-objective optimization has 
transformed transformer design. Rubaai (1994) [3] and Amoiralis, Georgilakis and Tsili 
(2008) [12] pioneered this field, showcasing the benefits of CAD and the effectiveness of 
genetic algorithms (GAs) in achieving optimal transformer design. Rubaai's work [3] 
demonstrated the potential of CAD in transformer design, highlighting benefits such as 
improved accuracy, reduced design time, enhanced visualization, automated optimization. 
Rubaai's study showed that CAD enables designers to explore complex geometries and 
optimize performance, paving the way for future research. Amoiralis, Georgilakis and Tsili’s 
(2008) [12] research built on Rubaai's findings, introducing multi-objective optimization using 
GAs. The authors considered multiple objectives, including minimization of copper loss, 
minimization of iron loss, minimization of material costs. Amoiralis, Georgilakis and Tsili’s 
(2008) [12] study demonstrated the effectiveness of GAs in achieving optimal transformer 
design, considering trade-offs between competing objectives. 
Subsequent studies further explored the application of CAD and multi-objective optimization 
in transformer design. For example: Lia et al. (2006) [13] combined GAs with simulated 
annealing to optimize transformer design. Tutkun et al. (2004) [14] used GAs to optimize 
magnetic core design. 
Recent research has integrated CAD with other optimization techniques, such as particle swarm 
optimization (PSO) and artificial neural networks (ANNs). 
Jabr (2005) [17] reviewed recent advances in transformer design optimization, highlighting 
the potential of evolutionary algorithms like GAs and PSO. The integration of CAD and multi-
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objective optimization has transformed transformer design, enabling Improved efficiency, 
reduced costs, enhanced performance, Increased reliability. 
The development of computer-aided design and multi-objective optimization techniques has 
significantly advanced transformer design. CAD and GAs have been successfully applied to 
optimize transformer design, reducing costs and improving efficiency. 
2.3 Magnetic Core Design and Robust Optimization 
Magnetic core design and robust optimization are critical aspects of transformer design, 
ensuring efficient and reliable performance. Tutkun et al. (2004) [14] and Geromel et al. 
(2002) [16] pioneered research in these areas, presenting design optimization methods for 
magnetic cores and robust optimization of transformer design. Tutkun et al.'s study [14] 
focused on optimizing magnetic core design using genetic algorithms (GAs). The authors 
considered various design parameters, including core geometry, material selection, and 
winding configuration. Their research demonstrated the potential of GAs in optimizing 
magnetic core design, resulting in improved efficiency and reduced losses. Geromel et al.'s 
work [16] introduced robust optimization techniques to ensure reliable transformer 
performance. The authors addressed uncertainties in design parameters and load conditions, 
employing linear matrix inequality (LMI) approaches to optimize transformer design. Their 
study highlighted the importance of robust optimization in mitigating performance degradation 
and ensuring reliable operation. Subsequent research built upon these findings, exploring 
advanced optimization techniques and robust design methods. For example, Elia et al. (2006) 
[13] combined GAs with simulated annealing to optimize transformer design, while Jabr 
(2005) [17] reviewed recent advances in transformer design optimization, emphasizing the 
potential of evolutionary algorithms. The integration of magnetic core design optimization and 
robust optimization has significantly enhanced transformer design: 
The development of magnetic core design and robust optimization techniques has substantially 
advanced transformer design. These studies demonstrate the effectiveness of GAs and robust 
optimization methods in ensuring efficient and reliable transformer performance. 
2.4 Recent Advances and Future Directions 
Jabr's comprehensive review (2005) [17] showcased recent breakthroughs in transformer 
design optimization, highlighting the potential of evolutionary algorithms like: Genetic 
Algorithms (GAs), Particle Swarm Optimization (PSO). 
Future Research Directions 
To further propel innovation, future research should focus on the following: 

1. Sophisticated Optimization Algorithms 
2. Developing hybrid algorithms combining GAs, PSO, and other techniques 
3. Exploring novel optimization methods, such as swarm intelligence and ant colony 

optimization 
4. Machine Learning Integration   
5. Applying machine learning to predict optimal design parameters 
6. Integrating machine learning with evolutionary algorithms 
7. Multi-Objective Optimization with Robust Optimization 
8. Developing robust multi-objective optimization frameworks 
9. Addressing uncertainties in design parameters and load conditions 
10. Advanced Materials and Technologies 
11. Optimizing transformer design for emerging materials and technologies 
12. Exploring new applications in renewable energy and electric vehicles 
13. Industrial Collaboration and Practical Implementation 
14. Collaborating with industry partners to implement optimization techniques 

3.  Objective Function Development 
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This study focuses on optimizing the design of a 5 KVA, 230/115 V, 50 Hz, dry-type 
transformer. The material cost is selected as the objective function. 
 
3.1 Design Variables and Constraints 
Two dynamic variables are chosen: 
 
1. EMF constant 
2. Window height/width ratio 
 
Standard values are adopted for other design and decision variables: 
- Core material: Cold Rolled Steel (CRS) 
- Conductor material: Copper 
- Flux-density: 1.4 wb/m² 
- Current density: 2.4 A/mm² 
- Core type: Stepped core with 3 steps 
- Window space factor: 0.4 
- Stacking factor: 0.93 (with CRS core) 
 
3.2 Design Constraints 
Practical considerations for standard transformers dictate the following design constraints: 
1. Full-load efficiency at 0.85 lagging power factor: ≥ 96% 
2. Voltage regulation at full load and 0.85 lagging power factor: ≤ 4% 
3. No-load current: ≤ 2% 
4. Temperature rise at full load: ≤ 50°C 
 
3.3 The Optimizing Function 
The material cost (Rs. = =  

Now we have to optimize (minimize) the function. 
4. GENETIC ALGORITHM 

Genetic algorithms were initially developed by John Holland and later advanced by Holland 
and DeJong. They were popularized by Goldberg. Numerous researchers, through their 
research activities, have expanded its applications and refined various aspects of the algorithm, 
making it widely applicable across nearly every field of engineering and research. By 
simulating natural genetic processes, genetic algorithms have become a fundamental tool for 
optimization. Figure 1 illustrates the optimization flow chart for the genetic algorithm. 

CM 1.5 1.51131( / ) 3371 2520 / 803 / ( )w w wR K K R K K K R   
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Fig 1. Diagrammatic Representation of Genetic Algorithm through Flow Chart 

A genetic algorithm involves three main steps: reproduction, crossover, and mutation. The 
process begins with an initial population of randomly encoded chromosomes, each representing 
a potential solution. These chromosomes are then selected for recombination using the 
crossover operator. The crossover operator creates improved offspring by combining genetic 
information from the selected chromosomes. This process continues through successive 
generations, gradually evolving better solutions. Probabilistic bit mutation is applied to 
introduce diversity, which enhances the quality of the solutions. This process of natural 
selection continues through a set number of generations, culminating in a final population of 
highly fit chromosomes that represent optimal or near-optimal solutions to the problem. 

5. SIMULATED ANNEALING 

Simulated Annealing Algorithm 
 
Simulated Annealing (SA) optimizes functions by mimicking metal crystallization. 
 
Principles 
1. Initialize with high temperature (T) and gradually decrease. 
2. Calculate energy change probability (P) using Boltzmann's constant (K) and temperature 
(T). 
 
SA Algorithm 
1. Initialize: x, ε, T, n, t=0. 
2. Generate neighboring point x(t+1) via random perturbation N. 
3. Evaluate: 
    - Δf ≤ 0: accept x(t+1) 
    - Else: generate r (0, 1) 
    - r ≤ P: accept x(t+1); otherwise, reject. 
4. Check termination: 
    - │x(t+1) - x(t)│ < ε and T small: terminate 
    - Else: update T via cooling schedule; repeat Step 2. 
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5. End. 
 
Key Parameters 
1. Initial temperature (T) 
2. Iterations per temperature (n) 
3. Cooling schedule 
 
Considerations 
1. High T increases convergence iterations. 
2. Low T may lead to insufficient exploration. 
3. High iteration count recommended. 
 
6. Pattern Search Algorithm 
 
The Pattern Search method iteratively searches for the minimum along a specified 
direction. This direction, called the pattern direction, is determined by two points: 
the starting point (`x0`) and the point obtained after univariate steps (`x`). 
Hooke-Jeeves Pattern Search Technique 
This technique establishes a series of search directions to find the optimal 
solution. 
 
6.1 Pattern Search Algorithm Steps 
 
1. Initialize: ̀ x0`, increment (`∆`), reduction factor (`ρ`), and termination criterion 
(`ε`). 
2. Set iteration counter (`k`) to 0. 
3. Evaluate base point (`xk`): 
    - If movement is successful, update `xk+1` and go to Step 5. 
    - Else, proceed to Step 4. 
4. Check termination: 
    - If `||∆|| < ε`, terminate. 
    - Else, update `∆(i) = ∆(i)/ρ` and return to Step 2. 
5. Update `xk+1` and move to next iteration. 
6. Convergence check: 
    - If `f(xk+1) < f(xk)`, repeat Step 5. 
    - Else, proceed to Step 4. 
 
Key Parameters 
 
1. Initial point (`x0`) 
2. Increment (`∆`) 
3. Reduction factor (`ρ`) 
4. Termination criterion (`ε`) 
  
The flow-chart for pattern search is given in fig. 2  
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Fig 2: Diagrammatic Representation of Pattern Search through Flow Chart 

7. CASE-STUDIES 

Case-studies on the design problem have been made using three different methods viz. Genetic 
algorithm, Simulated annealing and pattern search. The results are given below: 

7.1 Genetic Algorithm 

The results obtained from running the program using the genetic algorithm are provided below 
(Fig. 3 and Table 1). 
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Fig 3: Results using Genetic Algorithm 

 
Generation f-count Best f(x) Variation of mean 

f(x) 
Stall 

generations 
1 40 7850 8030 0 
2 60 7841 7910 0 

3-13 80-280 7838 7848-8027 0-4 
14-21 300-440 7837 7838-7869 0-5 
22-51 460-1040 7836 7836-7838 1-4 

Table 1: Convergence using GA 
7.2 Simulated  
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Fig 4: Results Using Simulated Annealing 

Annealing 

The results generated by running the program with the genetic algorithm are provided in Fig. 
4 (above) and table-II (below). 

Iteration f-count Best f(x) Current f(x) 
variation 

Mean 
temperature 

variation 
0 1 9924.45        9924.45         100 
10-30 11-31 7845.23        7859.81-7941.28          56.88 
40 41 7842.17 7842.17 12.2087 
50 51 7837.17 7837.17 7.30977 
60-820 61-825 7836.21 7837.71-7836.2 4.3766-3.805e-007 
830-890 835-895 7836.19 7836.19-7836.2 0.14636-0.006743 
900 905 7836.17 7836.17 0.00403716                       
910 915 7836.15        7836.16       0.0024172 
920 925 7836.14        7836.14       0.00144726 
930 935 7836.13        7836.13       0.000866531 
940-1200 945-1207 7836.12        7836.12- 

7866.07      
35.7863-3.073e-6 

1210 1217 7836.11        7836.11         0.00795039 
1220 1227 7836.1 7836.1 0.00476019 
1230-2230 1237-2243 7836.09 7836.09-7867.44 0.00265-9.51e-7 
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Table 2: Convergence Using SA 

7.3 Pattern Search 

The results generated by running the program with pattern search are presented below (Fig. 5 
and Table 3). 

 

Fig. 5 Results Using Pattern Search 

Iteration f-
count 

f(x) Mesh size Method 

0 1 9924.45        1          
1-2 2 9406.85        2        Successful poll/Refine 

mesh 
3-6 3-6 9146.92 2-0.25 Successful poll/Refine 

mesh 
7 7 7854.23 0.5 Successful poll 
8-12 8-12 7842.8 0.0625 Successful poll/Refine 

mesh 
13 17 7841.85         0.125      Successful poll 
14-17 21-32 7836.72 0.25-0.03125 Successful poll/Refine 

mesh 
18-20 34-42 7836.32 0.0625-0.01563      Successful poll/Refine 

mesh 
21-2 
2 

45-49 7836.2 0.03125-0.01563 Successful poll/Refine 
mesh 

23-25 51-59 7836.18 0.03125-0.007813 Successful poll/Refine 
mesh 
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26-27 63-67 7836.15 0.01563-0.007813 Successful poll/Refine 
mesh 

28-29 68-72 7836.12 0.01563-0.007813 Successful poll/Refine 
mesh 

30-36 76-79 7836.1 0.01563-0.003906      Successful poll/Refine 
mesh 

37-88 99-277 7836.09 0.007813-9.537e-
007      

Successful poll/Refine 
mesh 

Table 3: Convergence using PA 
8. CONCLUSION 

This study demonstrates the effectiveness of non-classical optimization techniques in 
minimizing material costs for transformer design. Simulated Annealing emerges as the most 
efficient method, offering improved results compared to GA and PS. Future research will focus 
on blending different non-classical techniques to realize a synergistic effect and further 
enhance optimization outcomes. 

This paper aims to optimize the material cost of a small, single-phase dry transformer using 
three soft computing techniques: Genetic Algorithm, Simulated Annealing, and Pattern Search. 
The main design variables—emf constant (K) and the window height-to-width ratio (Rw)—
were chosen because they directly affect the production cost. For core material, CRGOS was 
selected, and copper was chosen for the conductor to improve performance. Design constraints 
were maintained by adjusting the copper current density and iron flux density. The objective 
was to minimize the combined cost of iron and copper using each optimization method to 
achieve the lowest production cost. All three methods reached the same solution after a 
relatively small number of iterations. Using the design variables obtained from the Genetic 
Algorithm, Simulated Annealing, and Pattern Search, an auxiliary program was employed to 
calculate the dimensions of the optimized transformer. The cost increased slightly due to 
rounding real values to the nearest integers where necessary. The performance variables were 
also calculated, ensuring that all design constraints were met without violation. The paper 
attempts to argue that the non-classical or probabilistic optimization schemes give a much-
improved results compared to the conventional methods like gradient search approach. 
Moreover a comparative analysis has been carried out amongst different probabilistic 
optimization schemes and Simulated Annealing has been found to deliver the best result. But 
this result could be much improved by the application of an elegant blending of different non-
classical soft-computing techniques to realize a synergistic effect without applying them 
individually which is likely to be our future attempt. 

9. IMPLICATIONS 
The results of the study have important implications. They contribute to the optimization of 
transformer design. 
1. Improved material cost reduction. 
2. Enhanced efficiency and performance. 
9.1 Future Research Directions 
To further enhance optimization outcomes, future research will focus on: 
1. Integrating multiple non-classical techniques to leverage synergistic effects. 
2. Exploring advanced soft-computing techniques. 
3. Investigating scalability and applicability to larger transformer designs. 

10. LIMITATIONS 
While this study contributes to the existing body of knowledge, it acknowledges the following 
limitations: 
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1. Focus on small single-phase dry transformers. 
2. Simplified objective function. 

11. RECOMMENDATIONS 
The study’s findings lead to several recommendations. These suggestions are based on the 
analysis of the data and the results obtained. Implementing these recommendations could 
improve the overall outcomes. They are intended to guide future actions and decisions in the 
relevant area. 
1. Adopt non-classical optimization techniques for transformer design. 
2. Consider Simulated Annealing as a primary optimization method. 
3. Explore hybrid approaches combining multiple non-classical techniques. 
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APPENDIX 1: DEVELOPMENT OF THE OBJECTIVE FUNCTION 
       For the given rating of transformer, EMF/turn=  volts 

Maximum value of flux,  
Net area of core,  
Gross area of core,  

For a 3-stepped core, diam. of circumscribing circle, 
 

Window area, in m2 =  

Window width, in m =  

Window height, in m =  

Distance between core centers,  

Length of the largest side of core stamping (for 3-stepped core),  
Overall width,  

Gross area of yoke is same as gross area of core assuming same flux-density. 
The height of yoke, m =  

Over all height, m =  

Volume of iron, m3 =  

        =  

Taking density of CRS as 7650 Kg/m3 and cost of high grade CRS as Rs. 150/- per Kg. 
Cost of iron, =  

Mean length of turn, m =  

       

Total copper area in the window, mm2 = 
 

       Volume of copper =  

      

Taking density of copper as 8900 Kg/m3 and the cost of super enamelled refined copper 
as Rs. 450/- per Kg, 
The cost of copper, Rs.=  

      

The Total cost of material (Rs. = = 

 
APPENDIX 2: DIMENSIONS AND PERFORMANCE VARIABLES OF THE 
OPTIMIZED TRANSFORMER 

 The dimensions of the optimized transformer in terms of the optimal values of the design 
variables and the corresponding performance variables are given below: 
K & R found out by soft-computing techniques: SA, PS, &GA 
Chosen values of emf constant, K = 0.576;  
Chosen values of window height/width ratio, Rw= 3.14 
Chosen core material: CRGOS. Stacking factor, Ks= 0.93; Cost of iron/Kg= 150/-  
Chosen flux-density, Bm= 1.4 wb/m2; Iron loss/Kg at this flux-density= 1.331 W 

5  2.236 K K 
 2.236 / 2/ (4. 22 44  0.01007 )m tE K Kf  

0.01007 /1.4 0.007/ 36 ;i m m KB KA   

0.0071946 / 0.93 0.0073/ 6gi i s KA A KK  

/ 0.67 0.00736 / 0.67 0.10745gid A K K  
3 3/ [2.22 .10 ] 4.692 10 /w m wA S f K x K   

/ 0.004692 / ( ) 0.0685 /w w w w wW A R KR KR  

0.0685 /w w w wH W R R K 

0.10745 0.0685 /c w wd d W K KR   

0.9 0.0967a d K 

0.0685 / 0.2042c wW d a KR K   

/ 0.00736 / (0.0967 ) 0.08y giH A a K K K  

2 0.0685 / 0.16w y wH H H R K K   

2( ) 2{0.0685( / ) 0.2042 }0.0071946i w i w wV H W A R K KR K K    
1.50.0009856( / ) 0.002938w wR K K R K 

CI 1.51131( / ) 3371w wR K K R K 

( / 2) (0.10745 0.0685 / 2 / )mt w wL d W K KR    

0.3376 0.1076 / wK KR 

3
1 1 2 2 2 10 / ( ) 10000 / (2.236 2.4) 1863.4 /tN I N I S x E K x K   

 61863.4(0.3376 0.1076 / ) / ( 10 )wK KR K x
1.56.292 4 / 2.005 4 / ( )we K e K R   

CC 1.58900 450 [6.292 4 / 2.005 4 / ( )]wx x e K e K R   
1.52520 / 803 / ( )wK K R 

CM
1.5 1.51131( / ) 3371 2520 / 803 / ( )w w wR K K R K K K R   
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Chosen conductor material: COPPER; 
Chosen current density= 2.4 A/mm2 
Cost of copper/Kg= Rs. 450/- 
Resistivity of copper at operating temperature = 0.022 Ω/m/mm2 

EMF/Turn= 1.288V  
Net/ Gross area of iron= 4.1574E-03 m2/ 4.4704E-03 m2 
3-stepped core has been used.  
Diameter of the core circle= 8.168E-02 m 
Length of the largest side of stamping = 0.074 m 
Area of window= 8.0616E-03 m2 
Width, height of window: 0.051 m/ 0.16 m 
Distance between core center= 0.13268 m 
Total width of core= 0.20668 m 
Width and height of yoke:  0.074m; 0.06 m 
Total height of core, H = 0.28 m 
Volume/weight of iron= 3.0489E-03 m3/ 23.324 Kg 
Total cost of iron = Rs.3499/- 
Number of turns of the primary/secondary= 178/ 89  
Primary/Secondary current= 21.739A / 43.478 A 
Mean length of turn= 0.33677 m 
Volume/weight of copper= 1.086E-03 m3 /9.665 Kg 
Cost of copper= Rs.4349/- 
Total cost of material= Rs.7848/- 
Iron loss in W, % iron loss:  31.046 ;0.62093 
Copper loss in W, % copper loss:  137.61 ;2.7523 
Efficiency at full load, 0.8 lagging p.f.= 0.9595  
Magnetising current w.r.t primary = 0.31053 A 
% Magnetising current= 1.4285  
% Core loss current= 0.6209; % no load current= 1.558 
Magnetising current w.r.t primary= 0.3105 A 
% Magnetising current= 1.428  
% Core loss current= 0.6209  
% No load current= 1.5576 
Leakage reactance w.r.t. primary= 0.4957 Ω 
% Leakage reactance = 4.6854 
% Voltage regulation at full load, 0.85 lagging p.f.= 4.808 
Temperature rise of winding at full load = 42o C 
 


